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Abstract. A method For calculating the two-particle electron Green function (alloy conductivity) 
based on the cluster expansion for the swhering T-matrix is developed. Taking into account 
scattering processes on a11 pairs of atoms, an analytical expression for the cooductivity oFalloys 
with shon-range and long-range order is obtained. The coherent potential approximation is 
selected as a zero approximation. It is shown that the change in the electronic spechum due to 
ordering leads to an essential change in alloy conductivity. 

1. Introduction 

Essential progress in the theoretical investigation of various alloy properties has been 
achieved by the use of the best single-site approximation-the coherent potential 
approximation (CPA)-for the calculation of both the electronic density of states (one-particle 
Green function) and the kinetic coefficients (two-particle Green functions) [I]. However, the 
finer features of the density of states and transport phenomena cannot be described within 
the scope of the CPA. For example, describing Anderson localization requires account to 
be taken of interference due to electron scattering by different atoms [2,3], but vertex 
corrections to the electrical conductivity tensor vanish in the CPA 141. Another type of 
statistical correlation of electron scattering by atoms caused by correlation in the atom 
distribution, i.e. by short-range order (SRO), is not taken into account in the CPA either. 

There are a number of generalizations of the CPA that allow an account of the mentioned 
correlations. 

Existing knowledge of the influence of SRO on alloy properties proceeds from 
considering electron scattering in the Born approximation, and therefore is unsuitable for 
noble and transition metals. Generalizations of the CPA are free from this limitation and 
applicable to alloys with an arbitrary value of the impurity potential. For example, a cluster 
extension of the CPA [ l ]  was used in [5] to describe the influence of SRO on the electronic 
density of states, electron localization and metal-insulator transition in binary alloys using 
the idea of conditional averaging. But this theory faces the problem of the violation of 
translational symmetry (which is inherent in any cluster CPA [I]) and uses SRO parameters 
to describe the long-range order (LRO). In [6] an extension of the CPA based on the expansion 
of the small parameter Ro [7] (Ro is the decay length of the hopping integral for an electron 
in units of the lattice parameter) has been used to describe the effect of SRO on the electronic 
spechum and conductivity of an alloy with an arbitrary relation between impurity potential 
and band width. It is shown that the influence of SRO on conductivity is caused not only 
by the change in electron relaxation time due to correlation in arrangement of atoms but 
also by the change in the electronic spectrum. The latter effect takes place only beyond the 
Born approximation for electron scattering and, as pointed out in [6], is essential in alloys 
with Fermi level situated near the spectrum edges. 

0953-8984/941091707+24$19.50 0 1994 IOP Publishing Ltd I m i  



On the other hand, in [8,9] the change in alloy electronic spectrum caused by S R o  has 
been revealed also in the middle of a band. The density of electronic states exhibits a 
characteristic dip, which grows ils SRO increases. It can be explained by a trend towards 
spectral change when LRO and a gap in the spectrum are being set up. 

Thus it is of interest to study the influence of SRO and LRO on alloy conductivity, taking 
into account the mentioned change in the electronic spectrum in the middle of a band 
and the position of the Fermi level with respect to the arising dip or gap. In Smirnov’s 
papers [IO, 111 in the tight-binding approximation and for weak electron scattering, it is 
shown that LRO in alloys can lead to the formation of a forbidden band in the electronic 
spectrum. In particular, the supposition has been made about the possibility of a metal- 
insulator transition when the Fermi level is situated in the gap in the electronic spectrum. 
In [I21 alloy conductivity for LRO was considered in the CPA, but the case when the Fermi 
level is in the gap in the electronic spectrum arising on ordering has not been studied. 

To develop a consistent theory of conductivity in  an ordered alloy, one should go beyond 
the scope of the CPA, taking account of statistical correlations in the arrangement of atoms, 
i.e. SRO and LRO, and the interference in the electron scattering by different atoms. 

In [8,9] a new method has been developed that exceeds the scope of the CPA and 
takes statistical correlations into account. The conventional single-band model of diagonal 
disorder for a binary substitutional alloy has been employed. The CPA is used in this method 
as a zero approximation (the reference medium is described by the CPA). Then the corrections 
to the CPA corresponding to electron scattering on two atoms (all pairs of atoms), three 
atoms, etc., can be found. This has been achieved by summing the corresponding infinite 
series of the averaged scattering T-matrix. Statistical correlations are taken into account by 
considering the electron scattering by various clusters of atoms and with the aid of SRO and 
LRO parameters. A small parameter y allowing one to account for the statistical correlations 
at scattering only by small clusters of atoms arises in their theory (see below). It is like the 
parameter introduced in 1131 and is consistent with the Ioffe-Regel-Mott criterion [14]. In 
such a way in [8] the electronic density of states in an alloy with SRO and LRO was obtained 
by taking into account only scattering on all pairs of atoms. The above-mentioned dip and 
gap in the density of states have been revealed. 

In this paper a theory of ordered alloy conductivity based on the described method is 
developed, The analytical expression for the conductivity tensor is obtained with account 
of pair statistical correlations. Contributions of scattering processes on clusters consisting 
of three or more atoms can be omitted when parameter y is small. It is shown that such 
an approximation is valid in a rather wide range of alloy parameters. The theory developed 
allows the description of essential changes in alloy conductivity behaviour connected with 
the above-mentioned change in the electronic density of states arising on ordering. It should 
be noted that under the condition y << 1 the corrections due to Anderson localization are 
small in the three-dimensional system considered [Z] and are not taken into account. 

In section 2 the alloy conductivity tensor is described in terms of the scattering T- 
matrix in the tight-binding approximation. The cluster expansions for the T-matrix and the 
conductivity tensor are considered. The procedure of configurational averaging is discussed 
with the aid of diagrams. Analytical expressions for the T-matrix, electronic density of 
states and conductivity taking into account the single-site scattering (CPA) and scattering by 
pairs of atoms are obtained. The small parameter of the theory, y ,  is introduced. 

In section 3 the influence of SRO on the electronic density of states and conductivity is 
described. Section 4 deals with the influence of LRO on the density of states and conductivity 
of an alloy. In section 5 the range of applicability of the theory developed (the behaviour 
of the parameter y )  and the experimental situation are discussed. 
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2. The conductivity tensor 

For the calculation of the static alloy conductivity tensor in the case of elastic electron 
scattering, let us use the Kubo-Greenwood formula [4] (at T = 0) 

(1) 
ezh 

2irNQ ma+¶ = __ sP((ua[G(E+) - G(E-)lUb'[G(E+) - G(E-)I)lE=p 

where 

G(E*) G(E f is) = (E* - ~ 1 - l  (2) 

is the retarded or advanced Green function of the system (corresponding to sign '+' or '-'), 
H is the one-electron Hamiltonian of the alloy, E is the energy parameter, 6 + +0, U, 
is the (I component of the operator of the electron velocity vector, !2 = US& is the unit- 
cell volume, Q,, is the atomic volume, v is the number of sublattices, N is the number of 
sublattice sites, e is the electron charge, p is the Fermi level, and (. . .) denotes averaging 
over the different atom dishibutions in an alloy (configurational averaging). 

The Hamiltonian describing one-electron states of the binary alloy in a single-band 
model may be represented in the form 

where k i ,  is the off-diagonal matrix element of the Hamiltonian (hopping integral) in 
the Wannier representation, uin is the diagonal matrix element of the Hamiltonian, taking 
the value U A  or ug depending on whether atom A or B is in the site (in), jin) is the 
electron eigenfunction (Wmnier function), i is the sublattice number, and n is the sublattice 
site number. In the diagonal disorder approximation used here, the off-diagonal matrix 
elements of the Hamiltonian do not depend on the random distributions of atoms (they are 
not random quantities). 

Let us express the Green function G ( E )  in terms of the scattering T-matrix according 
to the relation 

G ( E )  = e ( E )  + C?(E)T(E)G(E).  (4) 

Here 

G ( E )  = ( E  - E)-' ( 5 )  

is the Green function for the effective-medium Hamiltonian whose matrix elements are equal 
to 

H;k = h i i ( l  - GijS,,)  + u;6ij8"m (6) 

where ci is the diagonal matrix element of the reference ordered medium potential (coherent 
potential), which depends on sublattice number i. The operator T of scattering by the 
random potential V satisfies the equation 

T = v + V G T  (7) 
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where 
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v = Gi" Gin = (Vi" - cT')lin)(inl (8 )  
U") 

and the arguments E of the operators (the coherent potential also depends on E) are omitted 
for the sake of simplification. 

It is easy to see that the relations 

G(E-) = Ct(E') G ( E - )  = T ( E - )  = '?+(Et) (9) 

follow from the defintions of operators (2). (4) and (5). Substituting (4) into (1) and using 
the relations (9), one can express the alloy conductivity tensor in terms of the retarded 
Green function 6 ( E + )  6 and corresponding T-matrix as follows: 

where hij(k) is the Fourier representation of the hopping integral 

hi; = N-'  h"(k) exp[ik(r, + pi - r ,  - pi)]. (12) 
k 

Here r, determines the origin of coordinates in the unit cell n of the ordered alloy and pi is 
the site position of sublattice i in the unit cell. The wavevector k changes within the limits 
of the ordered alloy first Bnllouin zone. 

Without any limitation the Wannier functions can be selected to be real. It leads to the 
condition 

. .  
hi; =hi,,,. (13) 

From (13) and (12) it  follows that h'j(k) = hji(-k), and from the latter equation and (11) 
we have 

. .  
(14) ij unxx = u?(k) = -u$ ( -k ) .  
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From (5), (6) and (13) it is possible to get 
- .. 

G;L = q". (15) 

The relation (15) in k-representation has the form 
- .. 6; E @j(k)  = p ( - k ) .  (16) 

From (14) and (16) it follows that 

- - 
[GlJ&]& = -[GlJ,G];$. (17) 

According to formula (10). alloy conductivity is expressed in terms of the 
configurationally averaged matrix elements (T,h) of the scattering T-matrix and their 
products ( ~ i &  

To calculate the conductivity tensor, let us use the cluster expansion of the T-matrix 
[8 ,9 ] .  As shown in [SI one can obtain the averaged T-matrix in closed analytical form 
taking into account only scattering by pairs of atoms (scattering by a single atom is taken 
into account in the Green function of the effective medium e introduced with the help of 
the coherent potential and makes no contribution to the averaged T-matrix) and neglecting 
contributions from clusters that consist of three or more atoms. This is possible and the 
omitted terms are small if some parameter y is small (see below). The expression obtained 
in [SI for the density of states appears to be applicable in a wide range of alloy parameters. 
The parameter of correlation in the arrangement of atoms is also considered to be small. 

An analogous procedure may be developed to calculate the two-particle Green function 
(conductivity). It is necessary to substitute the T-matrix cluster expansion [SI into expression 
(10) and to carry out averaging over configurations. It will be shown below that scattering 
processes by pairs of atoms make the major contribution in the range of applicability of 
the given theory, as in the case of the one-particle Green-function calculation. The same 
quantity y as well as the parameter of pair correlations in the arrangement of atoms on the 
lattice site serve as the small parameters. Then it  is possible to pass from expression (IO) 
to a simpler one 

n,n> .,"& 

( l o a )  

in which relation (17) is used, and to substitute in it the expression for the scattering T- 
matrix taking into account only scattering by pairs of atoms [SI. 

For the system under consideration the T-matrix may be given as an expansion 

T =ET.. 
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Substituting (8) and (18) in equation (7) it is easy to show that 
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zn = ti" t Ci"E Tjm 
(jm)#(in) 

where t;, is the operator of the single-site scattering matrix 

ti" = ( I  - GjnE)-%i". 

By making use of (18) and (19) one can obtain that 

+ c n,nl  r2n2 n,n17iisn,liini)(i3n31 + ... (20) 
( i , ~ ~ ) , ( ; ~ ~ * ) # ( l , " , ) . ( i ~ ~ , ) # ( i ~ " ~ )  

where 7;" is the diagonal matrix element of k n ,  i.e. 
- .. 

I ,  - 1  
s i n  = [I - (vi, - oi)Gnnl (vi, - U;) 

Expressions (18)-(20) give the possibility of obtaining a cluster expansion of the T- 
matrix. Omitting, for example, the scattering processes by three or more atoms, one can 
obtain from (18) and (19) the following expression [8] (see also [9, 15,161) describing the 
contributions from scattering by individual atoms and pairs of atoms: 

This expression is equivalent to series (20) in which only sums with one and two indices 
of sites are retained. 

The averaze scattering T-matrix (T,!?.) and direct product (TL:?,Ti$A) that appear in . . 
expressions (lo) and (10s can be easilyf&nd with the aid of random occupation numbers 
C:, having values 1 or 0 depending on the presence or absence of h-type atom in  the (in) 
site. Then any random quantity "*... i ln ,  can be represented as 

where X i , ~ , ~ ? ~ ~ , , , j , ~ ,  is the spectrum of a given random quantity. Using the property of 
random numbers 

it can be shown that for the binary alloy 
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where 

c! ez (C:,, 

piln,L2"T...i,", - ' 1 , A  ?...A1 = ((c;;, - ci^,')(c:n, - C2). . . (C$, - ci;)). i 

Here CA = x i ,  Cf = y; are the probabilities of occupation of the i sublattice by atoms A 
and B, which are equal to 

xi = x  + ( V I / V ) V  yi = 1 -x i  

for U ]  sublattices of the first type and 

xi = x - (v* /v)q  

for uz sublattices of the second type; here q is the LRO parameter, x ,  y = 1 - x are the 
concentrations of the alloy components A and B, &A, B i ~  are the Kronecker symbols, and 
U ]  + v2 = U. 

In the considered approximation when processes of scattering by two or more atoms 
are not taken into account in average values of (Tj  and (T x Tj, only two-atom (pair) 
correlations p$m E c$ appear. For homogeneous ordering they satisfy the relation 

ij .. 
ij - 1J - = em-n. 

As long as CPA is chosen as a zero approximation (see (4)-(6)) the contribution to (TLL) 
and (Ti;22TL;$) from processes of scattering by individual atoms must be zero, i.e. 

( T i n )  = 0 ( F i n )  = X i r i A  + Y;r;B 
- .. 

~ ~ ~ [ l  - (uA - ui)G&]- ' (uA - ui) (i = A, B). (24) 

This condition results in an equation for the coherent potential of the i sublattice 
- .. 

~i = (vi,) - (UA - u~)G&(uB - 0;) (25) 

with 

( U i n )  = XiUA + Y i U B .  

Quantities rii entering (Ti$ and (T22*T$i4} satisfy the relations 

riA = - y i ( ~ i ~  - T;A) r;B = X ~ ( T ~ B  - Ti*) (26) 

which follow from (24). 
Configurational averaging of the T-matrix and the product T x T can be put into a more 

instructive form with the aid of diagrammatic representations of ( T , i )  and (T2i2T$i4) (see 
figures 1 and 2), which follow from (20), (22) and (23). A point with a single outgoing 
line defines rii, a point with two lines corresponds to r i  and so on. Different points 
correspond to different lattice sites. A horizontal line represents 3ii. The multiplier 
p:A:;;::,,j,n, is assigned to sites connected by a wavy line and C: (C:J is assigned 
to all the remaining sites. Summation over inside sites (ilnl), (izn2) and over A,, hz, . . . 
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+ +A + + . . .  

Figure 1. Diagram representation of the averaged T-matrix ( T ) .  

is performed. Diagrams ( U )  in figures 1 and 2 present the scattering processes without 
correlation in arrangement of atoms. Diagrams (b)  represent the contributions connected 
with the pair interatomic correlations, which are described by parameters ELL. Diagrams ( c )  
representing scattering by clusters of three or more atoms are necessary for the evaluation of 
omitted terms. Diagrams containing seperate points with single outgoing line and diagrams 
corresponding to (T,i?T$;,) and (T,,22Tz$4) are absent in figures 1 and 2.  These diagrams 
do not make a contribution to conductivity owing to conditions (24) and [6u,6]fn = 0 
(the latter condition follows from (17)). 

Use of the described diagram representation and also the relations 

(&) = xiyi[x,'-' - (-yi)'- '](riB - riA)I 

riB - r:,, = [xf - (-si)'](riB - T ~ A )  i 

which follow from (26). make it possible to reduce the expressions for (T i i )  and (T,$2T$>4) 
(without contributions from scattering by three or more atoms) to geometrical progression 
series. They may be summed exactly and the result for the conductivity is 
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+ i +A +'*'A+K + ... 

Figure 2. Diagram representation of the averaged direcl product of T-matrices (T$$2T2$4). 

A; = (1 - x . x . a i j a j i  +x. . a i ja j i  + X .  , a i ja j i  - y .  .a i ja j i  1 

a i  =a;; = (tie - r i A ) G O m ,  

The same result may be obtained by making use of analytical expression (21) in averaging 
the T-matrix and the direct product T x T. 

I J m - m  CYJ m -m ,x m -m LYJ m --m 
- i j  . .  
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The alloy Fermi level in (27) is determined by the equation 

Ir 
g ( E ) d E  

2 -m 

where Z is the ratio of the number of occupied energy levels to the total number of levels 
in a band, and g (E)  is the electronic density of states per atom. 

The electronic density of states g ( E )  is connected with the one-particle Green function 
of an alloy by 

2 
g(E)  = - - I m ~ ( G ) &  

Z!J 

In accordance with (29) and (4) the density of states g(E) is defined by the averaged 
T-matrix, which may be calculated as described above. The average 7’-matrix in k- 
representation has the form 

Using (29), (4) and (30), one can obtain that 

The contributions of scattering by clusters of three or more atom represented by 
diagrams (c) in figures 1 and 2 are neglected in expressions (27) and (31) for the conductivity 
and electronic density of states. The relative values of the neglected terms can be evaluated 
with the help of parameters 

which are calculated using the first main diagrams (c) in figures 1 and 2. The quantities 
y i i  as well as correlation parameters E: are the small parameters of the theory. Evaluation 
of y& will be given below. 

.. 
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3. Influence of short-range order on alloy conductivity 

In the absence of long-range order ( q  = 0), the dependence of the terms in (27) on 
the sublattice number i disappears. With the aim of analytical investigation of the basic 
features of the influence of short-range order on alloy conductivity, and also for carrying 
out numerical calculations, we shall use the following dispersion law for the Fourier 
representation k(k) of hopping integral h,, suggested in [6,7] 

k(k) = W[1 + (kRo)']-' w < o  (33) 

where W is the position of the bottom of the pure metal energy band, and UA = 0 is assumed 
as the energy origin. The dependence (33) corresponds to the exponential decrease of the 
hopping integral h,,n with distance between sites (Ro is the characteristic decay length). 
The wavevector k changes within the first Brillouin zone. 

Using equations (3, (6), (11) and (33) and also formula (12) for the transition from 
k-representation to the site one, we obtain the following explicit expressions for matrix 
elements of the Green function C ( E )  and products of (?(E) and U, that enter expression 
(27) for the alloy conductivity: 

GoO=-[i+-- 1 i W  (%)b] 
E - U  4 I r ( E - O )  R; 

i WU" -- GO ( E  - U * ) ~  I sin(k;r,) C [ C u w ( G  - G+)u,81o, = -i- 
a 2nFzz W(O")' Ro kbr, 4b;l(b;F)2 IE -U]*  

1 WU" 
- sin(%r,) sin(kbr,) 

' (bb)2 [cos(kbr,) - kAr, 21E - uI2(bb)* 2nh Riu" 
- "  

[GU,G+]O, = 1-- 

where 

H 

b o = ( i l - - 1 ) 1 ' 2 = b b + i b , *  ko=-=kk;,+ik: bo k:>O 
E - U  Ro 
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k ,  = (67r2/S2~)1/3 is the Brillouin sphere radius, 1, = T,/r,+ 0 = U' + i d '  and 0'' c 0. 
We shall carry out an analytical study of the main trends of the influence of SRO on 

alloy conductivity, neglecting in (27) at r~ = 0, in comparison with 1, quantities that are 
proportional to a,, a-m. This approximation corresponds to the calculation of conductivity 
in the CPA (the first term in (27)) including the main corrections caused by SRO (terms 
in (27) proportional to em), i.e. this procedure takes into account in ( I )  the first terms of 
the diagram series for ( u . G ( E ~ ) v ~ G ( E 2 ) )  (figures l(b) and 2(b)). The contribution of 
the omitted terms is taken into account below in the numerical calculation of conductivity 
according to formula (27) (they account for about 20-30% of the total in the range of 
applicability of the used expansion on parameter y ) .  

V F Los' and S P Repetsky 

Thus in the assumed approximation the alloy conductivity is equal to 

where 

Wu" 
Z 

x - yu" 1 3WU"COS(2Z) + (sin(2z) - 2(E - u')2(b~)2 x y  6 z2 

and 

Here 6 = ug - V A ,  U A  = 0, Ci, ri are the coordination number and the radius-vector modulus 
for the i coordination sphere, and U; = E ) / ( X ~ )  is the Cowley SRO parameter. 

The expression (36) for F ( z )  consists of four terms. With the exception of the third 
term in (36) and the terms containing u"/(E -U ' ) ,  the factor F(@j) in (35) is proportional 
to the imaginary parts of the matrix elements of the configurationally averaged scattering T- 
matrix (T)k in k-representation (30). This part of F ( z )  is caused by the change in damping 
of electronic states due to SRO. The contribution to the conductivity described by the third 
term in (36) and also by the terms containing u"/(E - U ' )  is proportional to the real part 
of (T)k and caused by the change in the electronic spectrum due to SRO. It should be noted 
that the last contribution to the alloy conductivity is absent in the Born approximation of 
scattering theory [lo, 1 I]. 

This change in the electronic spectrum may be revealed with the help of expression (31) 
at q = 0 (see also [8,9]). Numerical calculations of electronic density of states of binary 
alloys with BCC sbucture are presented in figure 3. Concentration y = 0.5 and parameter 
RO = 0 . 2 ~  (a is the lattice parameter) are taken for the calculation. The energy is taken 
in units of the half-width of the pure metal energy band, $lW - h(k,) l ,  and 6 = -0.25 
i s  adopted. The SRo parameter for the first coordination sphere is 011 = -0.1. The energy 
dependences of the electronic density of states for a disordered alloy and for an alloy with 
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E 

Figure 3. Energy dependences of the electronic density of states g ( E )  of disordered alloy (curve 
A) and for the binary alloy with SRO (curve 8 )  and parameter y ( E )  for the binary alloy with 
SRO (curve C). 

SRO are depicted by curves A and B, respectively. Curve C in figure 3 presents the energy 
dependence of parameter y .  

These results show that for SRO a characteristic dip appears on the curve of the density 
of states g(E) in the range of energies corresponding to the Brillouin zone boundary of 
the ordered alloy. The magnitude of this dip increases with increase of SRO. It shows a 
tendency to form a m e  gap in the energy band as a result of setting up of LRO (see figures 5 
and 6). 

The imaginary part of the coherent potential U" in formula (36) may be estimated with 
the help of the expression [ S ]  

2Qo Wb' 
U" rr x y P  Im N x y ~  - R: 4x(E - (37) 

At a low electron concentration Z when the Fermi level of an alloy p (see (28)) is near 
the bottom of the conduction band and 

khrl << 1 

the terms in F(k;lrl) caused by the change in the energy spectrum may be neglected when 
I u " ~  is small enough in comparison with lp -U'[. In this case the sign of the factor F(khr1) 
in (35) becomes positive. It means that SRO in the first coordination sphere (a, e 0) leads 
to an increase in the conductivity. This conclusion agrees with the results obtained in the 
Born approximation [IO, 111. 

At 

(khr,) - E E = p (38) 

the terms in (36) caused by the change in damping of the electron states due to SRO may 
be neglected in comparison with the terms caused by the change in the electronic density 
of states. When the above-mentioned dip appears on the curve g ( E )  for the energy range 
defined by condition (38) for SRO, the sign of the factor F(kAr1) in (35) becomes negative. 
It means that when the alloy Fermi level p is in the region of the noted dip, the alloy 
conductivity decreases for SRO on the first coordination sphere (a, < 0). The possibility 
of an essential contribution to alloy conductivity by a change in the energy spectrum due 
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to SRO was noted for the first time in [6] .  However, the observed spectrum region was not 
investigated. 

With further increase of the electron concentration, when the Fermi level F goes out 
~ of the dip region, the factor F(kAr1) in (35) again becomes positive, and the conductivity 

behaves in the usual way, increasing for SRO. 
These features of the conductivity behaviour for SRO are confirmed by the numerical 

calculation of the function F(kArt) (it is verified that this factor reverses sign depending on 
the electron concentration value) and numerical calculations performed according to formula 
(27) at q = 0. The results of the calculation of the disordered alloy conductivity, do), and 
that for the alloy with SRO, a, for three values of the electron concentration characterized 
by the quantity z (see formula (28)) are given in table 1. The three different values of z 
correspond to three values of the Fermi level p (28) positioned respectively at the bottom, 
in the dip and near the upper edge of a band (figure 3). 

V F Los' and S P Repetsky 

Table 1. Influence of SRO on alloy conductivity. 

z =  0.1 0.5 0.9 
a((') (IO6 Sl-l m-') 1.04 1.06 2.63 
a (106 n-1 m-1 ) 1.31 0.97 2.68 

4. Influence of long-range order on alloy conductivity 

First we shall carry out an analytical investigation into the main trends of the influence 
of LRO on alloy conductivity in the single-site approximation. In this approximation the 
conductivity is described by the first term of equation (27). 

Let us consider a binary ordered alloy with BCC lattice. In this case, the number 
of sublattices is two (uI = q = 1). In  the nearest-neighbour approximation the matrix 
elements of the effective-medium Green function s ( E )  in k-representation have the form 

where 

Dk = ( E  - u ~ ) ( E  - U $  - hl'(k)hZ'(k)  h"(k) h 2 ' ( k )  = h ( k )  

h ( k )  = hgeikP 
P 

and p is the radius vector of a nearest neighbour in the alloy. 
Let us use the semi-elliptical band model for the unperturbed density of states 

where WA is the half-width of the pure metal A energy band. Passing in (39) from k- 
representation to the site one according to formula (12) and substituting integration over 
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Figure 4. The contour C for integration in formula (42). 

energy for summation over k with the use of (40), we obtain for the diagonal matrix elements 
of d(E)  in equation (25) for the coherent potential: 

eg = [ ( E  - o , ) / ( E  - uz)ld& 

Taking into consideration that according to (39) 6; = 
relation 

it is possible to obtain the 

m 

[u,(G - 6+)u,(6 - ct)I$ = dpp(p)L(F, E )  (42) 

p(6) = f N-’ u:2(k)u:2(k)s(p - h ( k ) )  

L ($ ,  E )  = [G;’(E) - 6;L2*(E)1* + [GC’(E) - G;’*(E)l[G;;2(E) - G;Z’(E)l. 

1, 
where 

01 k 

In crystals of cubic symmetry one may represent p(C) in the form [17] 

where U, is the maximum electron velocity in the energy band. 
Taking into account (43), the integration in (42) is performed in the segment [-I ,  11 

(assuming W A  = 1). In order to calculate the integral (42), analytical continuation of the 
integrand into the complex plane is canied out. The points 6 = -1,1 are branch points of 
the integrand q(p)L(.$,  E) .  In the segment [-1, 11 this function is real. At the other points 
of the real axis it is imaginary. Therefore, 

I 1, v(CW(6, E )  dC = R e f d W Q ,  E )  d6 

The contour C is shown in figure 4 
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The poles of the integrand are located at the points 

zI = ( A ~ A ~ ) I ~  z2 = -zt 7-3 = z; zq = -z; 

A I = E - u ~  A2 E - 0 2 .  

Performing the integration in (42) and substituting the result into (27), we shall obtain in 
the single-site approximation for alloy conductivity 

where 

x [IIA&l2U - (AIAI)* -Re(AtA;) t i h " t A 2 ) l t  ( A ~ A ~ * R ~ ( A I A * , ) ~ )  

A ]  = E  -ut A2 = E -U*. 

Let us consider the expression (44) for the case of weak scattering when ~ / W A  << 1. In 
this case the solution of equation (U) for the coherent potential with the use of (41) may 
be presented as 

(45) 

1 X [l  - ( E  - (U) + fq6)(E - (U) - 4~6)]'" 

(U) X U A  + yUe y6 = 0. 

Analysis of expressions (41) and (45) shows that LRO leads to the formation of a true 
gap in  the energy spectrum of the alloy with width q161 and with its centre at the point 
(U) = ys. 

When the Fermi level of the alloy is outside of the gap flSl << l l . ~  - (U)[ < I ,  it follows 
from (44) and (45) that 

Thus the dependence of the residual specific resistance p = l/um. on the LRO parameter q 
obeys Smunov's law [ 1 I ]  

1 2  P - ( x Y - p l ) ,  



Electrical conductivio of M ordered alloy 1723 

- (v)[ - $181, the dependence of U,, 
on the composition and degree of LRO is rather complicated. So, for alloys of stoichiometric 
composition (x  = y = 0.5) 

When the Fermi level is near the gap i q lS l  < 

8e2fiu;[l - $S2(1 - q2)J3/’ 
(47) 

In the first case the resistance decreases with ordering, whereas in the second case the 
behaviour of uauu (47) is quite the opposite: the resistance increases with ordering. 

When lp- (u) l  < f q l 8 l  and the Fermi level @ is in the gap, i t  is possible to show that the 
alloy conductivity (44) is proportional to the small parameter I Im(AIA2)/Re(AtA2)1E=P = 
l u ~ / ( p - u ~ ) + u ~ / ( p - u ~ ) l ,  and according to (45) i t  goes to zero together with the imaginary 
parts U: and U;’ of the coherent potentials of the sublattices. 

Therefore, during ordering, when the Fermi level gets into the gap being formed, the 
alloy becomes similar to a dielectric in its electrical properties. This is, in fact, quantitative 
confirmation of the existence of a metal-insulator transition predicted by S m h o v  [ 111. 

The main features of the behaviour of the alloy conductivity uea at LRO remain valid 
in the general case when the ratio of the impurity scattering potential to the width of the 
band S/wA is arbitrary, though now depends on y ,  S/wA and q in a complicated way. 

In figures 5 and 6 the results of numerical calculation of the electronic density of states 
(31) for alloys with various values of the LRO parameter q and correlation parameter for 
the first coordination sphere E:* at y = 0.5 and S / W A  = -0.5 are presented. Figure 5 
shows the density of states of  the disordered alloy at various values of &A’: ( a )  &A’ = 0, 
(b)  &A1 = -0.05 and ( c )  e:’ = -0.08. Figure 6 shows the density of states for ordered 
alloy: (a) q = 0.4, E:’ = -0.1 and (b)  q = 0.98, E;’ = 0. Broken curves depict the 
density of states calculated in CPA and corresponding to the first term in (31). Full curves 
depict the density of states in the two-site approximation. As can be seen from figure 5, 
the characteristic dip appears on the curve of the energy dependence of the density of states 
for formation of SRO, which is a precursor of the true gap arising on ordering (figure 6). In 
figures 7, 8 and 9 the results of numerical calculation of alloy conductivity are presented. 
The calculation has been performed according to formulae (44), (25) and (41) for the case 
8/wA = -0.5, y = 0.5 and for three different values of electron concentration Z. 

At z = 0.8 when the Fermi level p (28) is outside of the gap near the upper edge of 
the band, the conductivity uaua increases with the growth of the degree of LRO (figure 7). 

At z = 0.5, when the Fermi level p is in the middle of the gap, the behaviour of 
the conductivity is the opposite: on ordering it decreases by some orders of magnitude 
(figure 8). 

At z = 0.6 the Fermi level fi  for the disordered alloy is between the middle and the 
right edge of the gap formed on ordering. The position of the Fermi level f i  depends on 
q and for complete LRO it goes outside of the gap area. (In figure 9 the points C and E 
correspond to the positions of the centre and the edge of the gap.) The non-monotonic 
change in the conductivity in the given case (figure 9) is explained by this circumstance. 

It should be pointed out that the study of the conductivity behaviour for LRO in the CPA 
was carried out for the first time in [12]. However, the case of the Fermi level being in the 
gap was not considered in that work. 

Let us consider the contribution of scattering by pairs of atoms (taking into account the 
interatomic correlations) to the ordered alloy conductivity. For this purpose the dispersion 
law h(k) in (39) is taken in the form corresponding to an exponential decrease of the hopping 
integral h;, with distance between the sites 

3nQ@(l + 0’) %uu = 

h ( k )  = S ( k )  - S ( k , )  S(k)  = W[l + (kRo)’]-’ W < 0. (48) 
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I E 

Figure 5. Electronic density of states s(E) for 
the binary disordered alloy with various values of 
correlation parameter ci2 (see text for details). 
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Figure 6. Electronic density of states g ( E )  for the ordered alloy (see tcxl for details), 
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Figure 7. Dependence of alloy conductivity a on LRO parameter q (L = 0.8) 

‘I 

Figure 8. Dependence of alloy conductivity U on LRO pmmeter il (2 = 0.5) 

The parameters W and RO are determined as in (33). The wavevector k changes in the range 
of the first Brillouin zone of the ordered alloy (k, is the radius of the Brillouin sphere). 
The appearance of the constant term S(k,)  in (48) is caused by the choice of the energy 
origin in the centre of the pure metal band. 

The results of numerical calculation of the alloy conductivity (27) are presented in 
table 2. The alloy conductivity in the single-site approximation is denoted by U(’) and U is 
the conductivity obtained taking account of scattering by pairs of atoms. The calculation is 
carried out for different values of the LRO parameter q and of the pair correlation parameter 
for the first coordination sphere, &Az. The scattering parameter 6 = -0.5 and y = 0.5. The 
results of the calculations for two values of the electron concentration, i.e. for z = 0.9 (the 
Fermi level is outside of the gap near the upper edge of the band) and z = 0.5 (the Fermi 
level is in the centre of the gap), are presented in table 2. As follows from the results 
obtained, it is possible to neglect the contribution of scattering by pairs of atoms to the 
conductivity of disordered (v = 0, e:’ = 0) and almost completely ordered (q cz I )  alloys. 
However, this contribution may be considerable for partially ordered alloys ( q  - 0.5). 

5. Discussion 

We have considered the corrections to the electronic density of states and the conductivity of 
alloys arising from electron scattering by pairs of atoms and the statistical correlations caused 
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0 0.5 1.0 
il 

Figure 9. Dependence of alloy residual specific resistance p on mo parmeter q (z = 0.6) 

Table 2. Contribution of pain to the mnductivily of ordered alloys, 

n 0 0.4 0.98 0 0 
0 -0.05 -0.08 -0.1 0 4' 

2 = 0.9 U(') (IO6 Q-l m-l) 0.337 0.337 0.337 0.389 1.63 
U (lo6 0 - l  m-l) 0.340 0.359 0.377 0.471 1.63 

2 = 0.5 U([) (IO6 R-' m-l) 0.543 0.543 0.543 0.433 0.347 x IO-' 
U (lo6 0-l m-') 0549 0.474 0.430 0.254 0.343 x IO-' 

by SRO and LRO. These corrections can lead to an essential change in the electronic spectrum 
and a corresponding change in behaviour of the conductivity owing to the formation of a 
dip or gap in the density of states. 

It has been shown that SRO in the first coordination sphere (01, c 0) can lead to an 
increase or decrease in the conductivity depending on the electron concentration, i.e., in 
fact, on the position of the Fermi level with respect to the dip formed in the electronic 
density of states and caused by SRO. This dip increases with increase of SRO, showing a 
tendency to form a gap i n  the density of states if LRO comes into being. 

In the case of weak scattering ( 1 8 / / w ~  << 1) the appearance O f  LRO leads to the formation 
of a true gap in the electronic density of states of width ~161 (in the alloy model considered). 
Again the behaviour of the conductivity depends critically on the position of the Fermi level 
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with respect to the gap in the spectrum (see (46) and (47)). In particular, the Smirnov law 
1111 (decreasing resistivity during ordering) is obtained. When the Fermi level falls within 
a range of energy where the density of states is zero, the conductivity, of course, vanishes. 

A more complicated situation arises when the electron scattering is not small. Then, 
at B / W A  = -0.5 and y = 0.5, numerical calculation shows the existence of a non-zero 
density of states in the range of energies corresponding to the Brillouin zone boundary of 
the partially ordered alloy (see figure 6(a)). A m e  gap appears in the considered model 
only at nearly complete order. The corresponding behaviour of conductivity is shown in 
figures 7-9. 

The nature of the electronic states as well as the range of applicability of the theory 
developed may be established by means of a study of the behaviour of parameters y (32) 
depending on alloy parameters. We consider the inequality y e 4 as the condition for the 
given theory to be valid and as the condition for the electronic states to be extended (not 
localized). 

Let us first evaluate the parameter y at v = 0. As shown in [8], the supposition of the 
existence of a single pole ko = kb + ik; of the Green function Gk in the upper half-plane 
of complex values of k leads to the expression 

It follows from (49) that the values of parameter y (32) do not exceed the quantity 

In accord with (49) the terms of the sum in (50) decrease with increase of the distance 
between the lattice sites as 

exp(-2kgr,)/lkormj2 k: > 0. 

Taking into consideration that k{ - I m o  and the relation following from condition (24) 
(see also [13]) 

[ l + x y l r ~ - r ~ I  2 -  lCwl 2 ] I m u = ~ y l ? ~ - r ~ I ~ I m ( ? ~  

one may arrive at the conclusion that on the edges of the energy band (where g(E) - 
Im Gm --t 0) the value of the parameter y (50) is essentially larger than in the middle of 
the band. 

For more precise evaluation of the parameter y ,  let us transform (50) using the evident 
identity 

and also the relation 
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obtained by differentiation of equation (23). Substituting (51) and (52) into (50) we obtain 

V F Los' and S P Repetsky 

Y = IP/(1 + P)I 

The energy band edges correspond to the extremum points of the dispersion law h(k) ,  
which may be represented in the vicinity of these points by a parabolic dependence for 
cubic crystals 

h(k)  = w + pk2 w = constant p = mnstant . 

Taking into account also the fact that, on the edge of the energy band (at E + El), 
I m u  + 0, equation (25) in the range of energy values near band edges may be solved 
analytically. As a result, i t  is possible to show that the derivative of the imaginary part of 
the Green function 6,  (and outside of the energy band, the derivative of the real part of 
E,) with respect to energy tends to infinity at E + E, as ( E  - E,)-'/*. Owing to this, 
parameter y ( E )  (53) on the edge of the energy band at E + El approaches its maximum 
value, which is equal to 1. In the energy range where 4 < y ( E )  < I ,  the cluster expansion 
of the scattering T-matrix converges badly. Thus the expressions for alloy conductivity 
obtained in the given work cannot be applied in the case when the value of the Fermi level 
p falls within the mentioned range. However, the magnitude of this energy interval AE is 
insignificant with respect to the energy band width, and is determined for the energy band 
model (33) by the expressions: 

For the alloy parameters that were used above, the value lAEl/lWl - 5 x 
Numerical calculation of the parameter y ( E )  (32) shows that its values do not exceed 

0.05 in the whole energy range, with the exception of the above-mentioned energy ranges 
on the edges of the band. 

The arising of the gap i n  the electronic spectrum during ordering leads to the formation 
of new edges of the band where the parameter y may not be small. The width of the 
corresponding energy intervals A E ( 0 )  may be evaluated at small value of LRO parameter 
4 with the aid of (53). It has the form 

We should recall that in the model considered in section 4 the true gap at not very 
great q arises only in the case of weak scattering. Thus the results of section 4 for smaIl 
9 and small scattering are valied only outside of the interval AE(q)  (54). In particular, 
at q < 21/zy(l - y)lSl/W the half-width of the gap is lqlsl < AE(q)  and we cannot 
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say anything about the arising of a gap and the behaviour of the conductivity when p falls 
within the region of the gap. 

Experimental study of the influence of ordering on alloy conductivity has heen performed 
in a number of works [Ill.  Most of them deal with the cases when the behaviour of the 
residual resistance obeys Smimov’s law, i.e. resistance decreases with ordering of an alloy. 

However, the behaviour of the residual resistance in some cases exhibits more 
complicated character [18-201. A non-monotonic dependence of the residual resistance on 
the annealing temperature was revealed in CuAua alloys [18] near the point Tc = 200°C. 
which corresponds to the temperature of the orderdisorder transition (figure 10). Taking 
into account that the Fermi level of this alloy is situated near a gap arising at ordering in the 
s band, it is natural to assume that such a behaviour of the alloy resistance is caused by a 
change in the electronic spectrum. Numerical calculation for the model alloy corresponding 
to this case is presented in figure 9. A similar behaviour of the resistance has been revaled 
in Co+72 at.% Fe alloy near Tc = 300°C [I91 and in Fet25.5 at.%. A1 alloy [ZO]. From the 
point of view considered it is interesting that the temperature dependence of the resistance of 
Cr-AI alloys shows semiconductor properties at concentration - 23.5 at.% AI and metallic 
ones at other concentrations of AI [XI. 

T IKI 

Figure 10. Dependence of residual specific resistance of CuAu3 alloy on annealing temperature. 

The experimental results presented cannot serve, of course, as authentic conha t ion  of 
the effects theoretically studied in the given work. In particular, it is necessary to determine 
experimentally SRO and LRO parameters as well as the conductivity of the alloy under 
consideration. On the other hand, to compare the theory developed in this paper with the 
experimental data, one will perhaps need to use the real electronic spectrum (in this work 
model spectra of the types (33). (40) and (48) have heen used) and to extend the theory to 
the case of a two-band model. We hope to realize this in subsequent publications. 
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