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A theory for the electrical conductivity of an ordered alloy
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Abstract. A method for calculating the two-particle electron Green function {alloy conductivity)
based on the cluster expansion for the scattering T-matrix is developed, Taking into account
scattering processes on all pairs of atoms, an analytical expression for the conductivity of alloys
with short-range and long-range order is obtained. The coherent potential approximation is
selected as a zero approximation, It is shown that the change in the electronic specirum due to
ordering leads to an essential change in alloy conductivity.

1. Introduaction

Essential progress in the theoretical investigation of various alloy properties has been
achieved by the use of the best single-site approximation—the coherent potential
approximation (CPA)—for the calcuiation of both the electronic density of states (one-particle
Green function) and the kinetic coefficients (two-particle Green functions) [1]. However, the
finer features of the density of states and transport phenomena cannot be described within
the scope of the ¢PA. For example, describing Anderson localization requires account to
be taken of interference due to electron scattering by different atoms [2, 3], but vertex
corrections §o the electrical conductivity tensor vanish in the CPa [4]. Another type of
statistical correlation of electron scattering by atoms caused by correlation in the atom
distribution, i.e. by short-range order (SRO), is not taken into account in the CPA either,

There are a number of generalizations of the CPA that allow an account of the mentioned
correlations.

Existing knowledge of the influence of SRO on alloy properties proceeds from
considering electron scattering in the Born approximation, and therefore s unsuitable for
noble and transition metals. Generalizations of the CPA are free from this limitation and
applicable to alloys with an arbitrary value of the impurity potential. For example, a cluster
extension of the CPa [1] was used in [5] to describe the influence of SRO on the electronic
density of states, electron localization and metal-insulator transition in binary alloys using
the idea of conditional averaging. But this theory faces the problem of the violation of
translational symmetry (which is inherent in any cluster cpA [1]) and uses SRO parameters
to describe the lang-range order (LRO). In [6] an extension of the CPA based on the expansion
of the smalil parameter Ry [7] (Ro is the decay length of the hopping integral for an electron
in units of the lattice parameter) has been used to describe the effect of SRO on the electronic
spectrum and conductivity of an alloy with an arbitrary relation between impurity potential
and band width. It is shown that the influence of SRO on condoctivity is caused not only
by the change in electron relaxation time due to correlation in arrangement of atoms but
also by the change in the electronic spectrum. The latter effect takes place only beyond the
Born approximation for electron scattering and, as pointed out in [6], is essential in alloys
with Fermi level situated near the spectrum edges.
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On the other hand, in {8, 9] the change in alloy electronic spectrum caused by SRO has
been revealed also in the middle of a band, The density of electronic states exhibits a
characteristic dip, which grows as SRO increases. It can be explained by a trend towards
spectral change when LRO and a gap in the spectrum are being set up.

Thus it is of interest to study the influence of SRO and LRO on alloy conductivity, taking
into account the mentioned change in the electronic spectrum in the middle of a band
and the position of the Fermi level with respect to the arising dip or gap. In Smirnov’s
papers [10, {1] in the tight-binding approximation and for weak electron scattering, it is
shown that LRO in atloys can lead to the formation of a forbidden band in the electronic
spectrum. In particular, the supposition has been made about the possibility of a metal—
insulator transition when the Fermi level is sitvated in the gap in the electronic spectrum.
In [12] alloy conductivity for LRO was considered in the CPA, but the case when the Fermi
level is in the gap in the electronic spectrum arising on ordering has not been studied.

To develop a consistent theory of conductivity in an ordered alloy, one should go beyond
the scope of the CPA, taking account of statistical correlations in the arrangement of atoms,
i.e. SRC and LRO, and the interference in the electron scattering by different atoms.

In [8,9] a new method has been developed that exceeds the scope of the CPa and
takes statistical correlations into account. The conventional single-band model of diagonal
disorder for a binary substitutional ailoy has been employed. The CPa is used in this method
as a zero approximation (the reference medium is described by the CPA). Then the corrections
to the CPA comresponding to electron scattering on two atoms (all pairs of atoms), three
atoms, etc., can be found. This has been achieved by summing the corresponding infinite
series of the averaged scattering T-malrix. Statistical correlations are taken into account by
considering the electron scattering by various clusters of atoms and with the aid of SRO and
LRO parameters, A small parameter ¥ allowing one to account for the statistical correlations
at scattering only by small clusters of atoms arises in their theory (see below). It is like the
parameter introduced in [13] and is consistent with the Ioffe-Regel-Mott criterion [14]. In
such a way in [8] the electronic density of states in an alloy with SRO and LRO was obtained
by taking into account only scattering on ali pairs of atoms. The above-mentioned dip and
gap in the density of states have been revealed.

In this paper a theory of ordered alloy conductivity based on the described method is
developed. The anaiytical expression for the conductivity tensor is obtained with account
of pair statistical correlations. Contributions of scattering processes on clusters consisting
of three or more atoms can be omitted when parameter 3 is small. It is shown that such
an approximation is valid in a rather wide range of alloy parameters. The theory developed
allows the description of essential changes in alloy conductivity behaviour connected with
the above-mentioned change in the electronic density of states arising on ordering. It should
be noted that under the condition ¥ <« 1 the corrections due to Anderson localization are
small in the three-dimensional system considered [2] and are not taken into account.

In section 2 the alloy conductivity tensor is described in terms of the scattering T'-
matrix in the tight-binding approximation. The cluster expansions for the T'-matrix and the
conductivity tensor are considered. The procedure of configurational averaging is discussed
with the aid of diagrams. Apalytical expressions for the T-matrix, electronic density of
states and conductivity taking into account the single-site scattering (CPA) and scatteting by
pairs of atoms are obtained. The small parameter of the theory, ¥, is introduced.

In section 3 the influence of SRO on the electronic density of states and conductivity is
described, Section 4 deals with the influence of LRO on the density of states and conductivity
of an alloy. In section 5 the range of applicability of the theory developed (the behaviour
of the parameter y) and the experimental situation are discussed.
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2. The conductivity tensor

For the calculation of the static alloy conductivity tensor in the case of elastic electron
scattering, let us use the Kubo-Greenwood formula [4] (at T = 0)

2

Oup = %ESP{(UQ[G(EJ’) ~ G(ED]Y[G(ET) = G(E ) e=p (1)

where
G(E®) = G(E +18) = (E* — H)™! (2)

is the retarded or advanced Green function of the system (corresponding to sign *+” or ‘=’),
H is the one-electron Hamiltonian of the alloy, E is the energy parameter, § — 0, v,
is the @ component of the operator of the electron velocity vector, & = vy is the unit-
cell volume, §2 is the atomic volume, v is the number of sublattices, N is the number of
sublattice sites, e is the electron charge, p is the Fermi level, and (...) denotes averaging
over the different atom distributions in an alloy (configurational averaging).

The Hamiltonian describing one-electron states of the binary alloy in a single-band
model may be represented in the form

H= Y timhl (jmi+ > jin)vilin). 3)
{in), (fm)#(in) {in)

where 43, is the off-diagonal matrix element of the Hamiltonian (hopping integral} in
the Wannier representation, vy, is the diagonal matrix element of the Hamiltonian, taking
the value va or vp depending on whether atom A or B is in the site (in), |in) is the
electron eigenfunction (Wannier function), { is the sublattice number, and n is the sublattice
site number. In the diagonal disorder approximation used here, the off-diagonal matrix
elements of the Hamiltonian do not depend on the random distributions of atoms (they are
not random quantities).

Let us express the Green function G(E) in terms of the scattering T-matrix according
to the relation

G(E) = G(E) + G(E)T(E)G(E). N
Here
G(E) = (E - H)™! (5)

is the Green function for the effective-medium Hamiltonian whose matrix elements are equal
to

B = hi (1 = 8i8um) + 018;j8um ©

where ¢ is the diagonal matrix element of the reference ordered medium potential (coherent
potential), which depends on sublattice number {. The operator T of scattering by the
random potential V satisfies the equation

T=V+VGT (7
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where

V=30 == o)lin)in| ®

(in)

and the arguments E of the operators (the coherent potential also depends on E) are omitted
for the sake of simplification.
it is easy to see that the relations

G(E™) = G*(E™) G(E™) = GH(E™) T(ET) =THE"Y (9

follow from the defintions of operators (2}, (4) and (5). Substituting {4) into (1) and using
the relations (9), one can express the alloy conductivity tensor in terms of the retarded
Green function G(E*) = G and corresponding T-matrix as follows:

ezﬁ ~ ~+ ~ LRy U]
% =~ e Re% {[u.,(c — GHyup(G - GO
+2 ) [[Gva(G —~ G*wpGLl +[Gup(G — GHw Gy 1T
(im)
+ 3 (AGuG [CupGYh (TR T

gy Rz T HAR
(UL RGL AN GLEY,

~[1G* v G, 16us G 12, +16 s GN, [GuaGF TS KT Tn";?')}} :
a0
The matrix elements of the operator v, in k-representation are equal to
Vo = ,éaf’;';"" e (1
where 4% (k) is the Fourier representation of the hopping integral
B, = N1y B (k) explik(ry + pi ~ rm — ). (12)
%

Here r, determines the origin of coordinates in the unit cell n of the ordered alloy and g; is
the site position of sublattice / in the unit cell, The wavevector k& changes within the limits
of the ordered alloy first Brillouin zone.

Without any limitation the Wannier functions can be selected to be real. It leads to the
condition

R = hil (13)

From (13) and (12) it follows that 2% (k) = ~/*(—£k), and from the latter equation and (11)
we have

v = vl (k) = —vii(=h). (14)
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From (5), (6) and (13) it is possible to get
Gl = Gl (1)
The relation (15) ip k-representation has the form
Gl =G0 =Gl (-k). (16)
From (14} and (16) it follows that
(v Gl = —1G G, (17)

According to formula (10), alloy conductivity is expressed in terms of the
configurationally averaged matrix elements (75} of the scattering 7T-matrix and their
products (22 T34 ).,

To calculate the conductivity tensor, let us use the cluster expansion of the T-matrix
[8,9]. As shown in [8] one can obtain the averaged T-matrix in closed analytical form
taking into account only scattering by pairs of atoms (scattering by a single atom is taken
into account in the Green function of the effective medium G introduced with the help of
the coherent potential and makes no contribution to the averaged T-matrix) and neglecting
contributions from clusters that consist of three or more atoms. This is possible and the
omitted terms are small if some parameter y is small (see below)., The expression obtained
in [8] for the density of states appears to be applicable in a wide range of alloy parameters.
The parameter of correlation in the arrangement of atoms is also considered to be small.

An analogous procedure may be developed to calculate the two-particle Green function
{conductivity). It is necessary to substitute the T-matrix cluster expansion [8] into expression
(10) and to carry out averaging over configurations. It will be shown below that scattering
processes by pairs of atoms make the major contribution in the range of applicability of
the given theory, as in the case of the one-particle Green-function calculation. The same
quantity ¥ as well as the parameter of pair correlations in the arrangement of atoms on the
lattice site serve as the small parameters. Then it is possible to pass from expression (10)

to a simpler one

e%h
2T UQQ

e = Re) {[va(é — GMYua(G — G + 4T3 Gve (G — GH)u Gl

+2 3 [2(ToMGva(C ~ CHu Gl + (T Tio) — T TN v G,
(fm)#(i0)

x [Guy Gl — (Tie(TooY) — (T, (TJ&)*})[@vaéJg{,,[évac‘#].‘;{,,]]

E=g

(10a)

in which relation (17) is used, and to substitute in it the expression for the scattering T-
matrix taking into account only scattering by pairs of atoms [8].
For the system under consideration the T-matrix may be given as an expansion

T=3 T (18)
(in}
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Substituting (8) and (18) in equation (7) it is easy to show that

T =t +twG Y Tim (19)
(jmY#(in)

where t;, is the operator of the single-site scattering matrix
tin = (I - ﬁiné)_lﬁin-
By making use of (18) and (19) one can obtain that

T=3 melindml+ Y T Gk Tamlivm) Gl
{f1m1) (i), (izng)#(irny)
+ Z ri,nl G::.:,z;z rfznzG::;;;g ri;qn;]ilnl) (£3n3| +... (20)
Civny ) (langdst(h ), (ans )56 (izng)

where T, is the diagonal matrix element of £, i.e.

Tin = [1 = (%a — 0GR (Win = 00).

Expressions (18)—(20) give the possibility of obtaining a cluster expansion of the T-
matrix. Omitting, for example, the scattering processes by three or more atoms, one can
obtain from (18) and (19) the following expression {8] (see also [9, 15, 16]) describing the
contributions from scattering by individual atoms and pairs of atoms:

2 T Gl Gl lin) (in] + tinTim Gimlin){ jm

T =Y tslinylin] + @h)

1 Al
) (im).(Fm£(in) I = Zin T Grm G

This expression is equivalent to series (20) in which only sums with one and two indices
of sites are retained.

The average scattering T-matrix (7} and direct product (7,!2 7,34} that appear in
expressions (10) and (10g) can be easily found with the aid of random occupation numbers
C} having values 1 or O depending on the presence or absence of A-type atom in the (in)

site. Then an'y random quantity X; a;in,.4x Can be represented as

. ¥ . —_ )‘l Az A“' 2 N
X:,mlanz...lrm = E Cilnl C,’an s Cj..m Xt]kuz).'z...i{l[ (22)
AAz.M

where X; 60,00 1S the spectrum of a given random quantity. Using the property of
random numbers

Z C:Ln =1
X
it can be shown that for the binary alloy
Ch=Cl+(Ch—-CHBrz—8w)  (A=AB)

Blheh o BB (Bue = S0a) G — Sna) . (Bup — Bua)  (23)
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where
Cl = (Ci)
S iAo A st A A A A %
Pfl;l;inz.r..img = ((Cfl.]'lg - Cill)(cr';iz - CI':) e (Cfgiz; - Cicl )'

Here C* = x;, C? = y; are the probabilities of occupation of the i sublattice by atoms A
and B, which are equal to

xu=x+i/v)n yi=1-—x
for »y sublattices of the first type and
xi =x —(n/v)n

for v» sublattices of the second type; here n is the LRO parameter, x, y = 1 — x are the
concentrations of the alloy components A and B, 8,4, 8,5 are the Kronecker symbols, and
v+ =,

In the considered approximation when processes of scattering by two or more atoms
are not taken info account in average values of {T) and (T x T), only two-atom (pair)
correlations Eﬁf‘m = &,), appear. For homogeneous ordering they satisfy the relation

gl =gl =en
As long as CPA is chosen as a zero approximation (see (4)—(6)) the contribution to (T,f,’,})
and (T;,‘:jfz T;;j&) from processes of scattering by individual atoms must be zero, Le.
{tin) =0 {Tin) = x;Tia + YiTiB
wll = ~oNGgl ™ (m—a)  (h=A,B). (24)
This condition results in an equation for the coherent potential of the / sublattice
0 = (vja) = (va — )G (ve — &) (25)

with

{Vin} == x;va + YiB.

Quantities 7;, entering {T.%) and (T2 Thl ) satisfy the relations

Tia = —Yi(Tig — Tia) s = X (Tig — Tipn) (26)

which follow from (24).

Configurational averaging of the 7-mairix and the product 7 x T’ can be put into a more
instructive form with the aid of diagrammatic representations of (Tn%) and (7,12 T2} (see
figures 1 and 2), whick follow from (20), (22} and (23). A point with a single outgoing
line defines 7;5, a point with two lines corresponds to z2 and so on. Different points
correspond to different lattice sites. A horizontal line represents G¥.. The multiplier
piik-Ar s assigned to sites connected by a wavy line and C} = (Ch) is assigned

finyfany iy
to all the remaining sites. Summation over inside sites (i1#1), (fzn2) and over Ay, Ag, ...
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ta)
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T /}(\
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PG
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Figure 1. Diagram representation of the averaged T-matrix (T).

is performed Diagrams (a) in figures 1 and 2 present the scattering processes without
correlation in arrangement of atoms. Diagrams (&) represent the contnbuuons connected
with the pair interatomic correlations, which are described by parameters &5,. Diagrams (c)
representing scattering by clusters of three or more atoms are necessary for the evaluation of
omitted terms. Diagrams containing seperate points with single outgoing line and diagrams
corresponding to (T,1'2 T,2% 3 and (T,,‘l'fsz 2t ) are absent in figures 1 and 2. These diagrams
do not make a contribution to conductivity owing to conditions (24) and [(31;“(“?]2;1 =0
(the latier condition follows from (17)).
Use of the described diagram representation and also the relations

(rh) = xyle ™ — (=3 Mg — ma)
tlp — thy =[xl — (=3 1(zs — Tia)’

which follow from (26), make it possible to reduce the expressions for {Tr4,) and (T,,'f,',’Q T,::f,;;)
(without contributions from scattering by three or more atoms) to geometrical progression
series. The_w,r may be summed exactly and the result for the conductivity is

Oun = —5— ReZ{[v“(G —GMu(G-GN+2 D (AN N nxyiyaial, vel)
(Jmy#(i0)

x {200x; — y) +x,y,(xj ypalailialal, (tig — tadGve (G — G v, Gl
+[1 - xx;yevi(aial, zuwmcna—r.-A)[éua(G—éJf)vﬁé]i,fm
— (8 — TaX(zm — GG G [ CYL 1)

+4 Z Re ((A”) "xix;yia ”a‘m-{-s")
{Jm)#(i0)
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+

+ + ..
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* ] I k4 +JQ<\ + + ...
j/'\

Figure 2. Diagram representation of the averaged direct product of T-matrices {T,,'l’f}g T,,‘;,',“q)

U'
x 1~ xixjyi}’j(a.f,{ﬂ ) I U*)(sz —TaY (7B — Tja)
f?l {13
x [Gua GH1Y, [é+uaé]f,{n} 27)
E=u

where
Al = (1 — xixjallall, )1 + myjalall) (1 + yyaal ) - yiyjalia®,
di‘r = a0m ('E,'B - TjA)éE{n.

The same result may be obtained by making use of analytical expression (21) in averaging
the 7-matrix and the direct product T x T.
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The alloy Fermi level g in (27) is determined by the equation
1 [*
Z= —[ g(EYdE (28)
2J)

where Z is the ratio of the number of occupied energy levels to the total number of levels
in a band, and g(E) is the electronic density of states per atom.

The electronic density of states g(E) is connected with the one-particie Green function
of an alloy by

2 y
g(B) = ——Im ) (G)ig. (29)

In accordance with (29) and (4) the density of states g(E) is defined by the averaged
T-matrix, which may be calculated as described above. The average T-maftrix in k-
representation has the form

Ty = D0 @y galial, + e
(i)

x {lxi — ¥ + xyi(x, = yidaal lahall (mg — 1ia)8y

+ 1L = xix) yeyj (@ aBE) e (1 — Tja) explike - Tm)d ). (30)

Using (29), (4) and (30), one can obtain that
2 =11} i
&(E) =_Elm(ZG°°+. 2. A wmywyaal, + 6
i f{im)# G0

x {1x; — ¥ + xyi(x; — yyatlal Jalall (xp — ua)(GHY,

+ [~ xxyyyyalal el (e — yal(GDY })- @D

The contributions of scattering by clusters of three or more atoms represented by
diagrams {c} in figures 1 and 2 are neglected in expressions (27) and (31} for the conductivity
and electronic density of states. The relative values of the neglected terms can be evaluated
with the help of parameters

Vo = (32)

2
&
> i ( G,'j“) @)’

{hmy)#(m) om

which are calculated using the first main diagrams (¢} in figures I and 2. The quantities
VuJ as well as correlation parameters &5 are the small parameters of the theory. Evaluation
of Vom will be given below.
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3. Influence of shori-range order on alloy conductivity

In the absence of long-range order (yn = 0), the dependence of the terms in (27) on
the sublattice number | disappears. With the aim of analytical investigation of the basic
features of the influence of short-range order on alloy conductivity, and also for carrying
out numerical calculations, we shall use the following dispersion law for the Fourier
representation A(k) of hopping integral &, suggested in [6,7]

k) = W[ + (kRo)?T! W <0 (33)

where W is the position of the bottom of the pure metal energy band, and vy = 0 is assumed
as the energy origin. The dependence (33) corresponds to the exponential decrease of the
hopping integral h,,, with distance between sites (Rp is the characteristic decay length).
The wavevector k changes within the first Brillouin zone.

Using equations (5), (6), (11} and (33) and also formula (12) for the transition from
k-representation to the site one, we obtain the following explicit expressions for matrix
elements of the Green function G(E) and products of G(E) and v, that enter expression
(27) for the alloy conductivity:

. | T R e N
= 1+ — v
Goo E-o*|: +4n‘(E—J) (Rg)b:l

G LW QD ex (ikorm)
Om_’4n_(E_o_)2 0 P 0fm

2 |\E—of? (b’)3
+ — e
['UQ(G G )Ua(G G )]Uﬂ— 37”.12 Wo RO
. Qy (E—0o*)?(5))? (1 C 3We" 1
TemiE WG R Ry "2E Z o bob}

[Gve(G = GTYueGlog =

- e . S (E—o*)? By(B})? { sin(kyre) i Wo”
— Gt =
;[GU&(G Gy Glom 271'&2 W(e? R o 456(373)2 IE — o2
. Wo‘” rm . 3 "
x exp(ikst) [Zb{) + TE————O‘IZ (E(; - IEU-)}] exp(—kgtm) (34)
G B W (ko) (G - L
[G'Ua ]()m =1 4J'l'ﬁ (E )2R3 exp(! Df'm)( o * m)
Qo () sin(kyry) Wo" _
+ D ; _ ) _ !
(GvGTIon =137 2 [""S(k"r’“) Krm  2E =~ olpe o)
exp{—k§rm)
X ‘—%;f_( o * Imd

where

. Ry km_kﬂ) TN
=bg—i— |2 kgl =b b
b b(} lx[km-F Dn(km-l-ko :l +1

W 1/2 . bo .
bo=(ﬂ_1) =Gy k=g =Mt K0
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km = (627 $20)'/? is the Brillouin sphere radius, Ly, = 7y /rm, 0 = ¢’ + ic” and 0" < 0.

We shall carry out an analytical study of the main trends of the influence of SRO on
alloy conductivity, neglecting in (27} at » = 0, in comparison with 1, quantities that are
proportional to @n, a-y. This approximation corresponds to the calculation of conductivity
in the cpa (the first term in (27)) including the main comrections caused by SRO (terms
in (27) proportional to £}, 1.e. this procedure takes into account in (1) the first terms of
the diagram series for (v,G(E))vgG(E,)} (figures 1(b) and 2¢b)). The contribution of
the omitted terms is taken into account below in the numerical calculation of conductivity
according to formula (27} (they account for about 20-30% of the total in the range of
applicability of the used expansion on parameter y).

Thus in the assumed approximation the alloy conductivity is equal to

o = 09 (1 -3 Cioi Fkors) exp(—Zkgi’g)) (33)

E.:p.

where

. )___ )_ Wo' cos? z :I
(z sin? z Z(E — a.f)?(b \2 2(E — 0')2(b)?

x—yo' | 3 3Wo" cos(2z)
T azz( im0 2(5—«7')2(1»5)2)

1 (co . sing Wo sinz )2 W2(o™? cos(2z) 36)

2 T 2E — o (By)? 4E — oAby
and

O _ e’ (E —U’)z(b{))3
&  3xin Wo"Ry

E=p

Here § = vg —vga, va = 0, C;, r; are the coordination number and the radius-vector modulus
for the I coordination sphere, and o; = &;/(xy) is the Cowley SRO paramefer.

The expression (36) for F(z) consists of four terms. With the exception of the third
term in (36) and the terms containing o /(E — o), the factor F (kyr;) in (35) is proportional
to the imaginary parts of the matrix elements of the configurationally averaged scattering T'-
matrix (T}, in &-representation {(30), This part of F(z) is caused by the change in damping
of electronic states due to SRO. The contribution to the conductivity described by the third
term in (36) and also by the terms containing o”/{E — ¢’) is proportional to the real part
of (T} and caunsed by the change in the electronic spectrum due to SRO. It should be noted
that the last contribution to the alloy conductivity is absent in the Born approximation of
scattering theory [10,11].

This change in the electronic spectrum may be revealed with the help of expression (31)
at 5 = 0 (see also [§,9]). Numerical calculations of electronic density of states of binary
alloys with BCC structure are presented in figure 3. Concentration y = 0.5 and parameter
Ry = 0.2 (a is the lattice parameter) are taken for the calculation. The energy is taken
in units of the half-width of the pure metal energy band, %IW ~ A(kn)|, and & = —0.25
is adopted. The SRO parameter for the first coordination sphere is oy = —0.1. The energy
dependences of the electronic density of states for a disordered alloy and for an alloy with
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glE), ¥l

Figure 3. Energy dependences of the electronic density of states g{ £} of disordered alloy (curve
A) and for the binary alloy with sro (curve B) and parameter y (£) for the binary alloy with
SRO (curve C).

SRO are depicted by curves A and B, respectively. Curve C in figure 3 presents the energy
dependence of parameter y.

These results show that for SRO a characteristic dip appears on the curve of the density
of states g(E) in the range of energies corresponding to the Brillouin zone boundary of
the ordered alloy. The magnitude of this dip increases with increase of SRO. It shows a
tendency to form a true gap in the energy band as a result of setting up of LRO (see figures 5
and 6),

The imaginary part of the coherent potential o in formula (36) may be estimated with
the help of the expression [8]

- L9 Wwh'
"o xy8? RS L b —
o' = xy8 ImGpy > xy R An(E — o)

(37)
At a low electron concentration Z when the Fermi level of an ailoy u (see (28)) is near
the bottom of the conduction band and

Rory <1

the terms in F{kyr1) caused by the change in the energy spectrum may be neglected when
lo”| is small enough in comparison with | — o], In this case the sign of the factor F(kjr;)
in (35) becomes positive. It means that SRO in the first coordination sphere (o; < 0) leads
to an increase in the conductivity. This conclusion agrees with the results obtained in the
Born approximation [10, 11].

At

(kyry) ~m E=pu (38}

the terms in (36) caused by the change in damping of the electron states due to SRO may
be neglected in comparison with the terms caused by the change in the electronic density
of states, When the above-mentioned dip appears on the curve g(E) for the energy range
defined by condition (38) for SRO, the sign of the factor F({k{ri) in (35) becomes negative.
It means that when the alloy Fermi level y is in the region of the noted dip, the alloy
conductivity decreases for SRO on the first coordination sphere (o, < 0). The possibility
of an essential contribution to alloy conductivity by a change in the energy spectrum due
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to SRO was noted for the first time in [6]. However, the observed spectrum region was not
investigated.

With further increase of the electron concentration, when the Fermi level w goes out
of the dip region, the factor F(k4ri) in (35) again becomes positive, and the conductivity
behaves in the usual way, increasing for SRO.

These features of the conductivity bebaviour for SRO are confirmed by the numerical
calculation of the function F(kjr;) (it is verified that this factor reverses sign depending on
the electron concentration value} and numerical calculations performed according to formula
(27) at 5 = 0. The results of the calculation of the disordered alloy conductivity, ¢@, and
that for the alloy with SRO, o, for three values of the electron concentration characterized
by the quantity z (see formula (28)) are given in table 1. The three different values of z
correspond to three values of the Fermi level u (28) positioned respectively at the bottom,
in the dip and near the upper edge of a band (figure 3).

Table 1. Influence of sRO on alloy conductivity.

Z= 0.1 0.5 0%

c® o~ m-h 104 106 263
o (105 21 m~1) 131 097 268

4. Influence of long-range order on alloy conductivity

First we shall carry out an analytical investigation into the main trends of the influence
of LRO on alloy conductivity in the single-site approximation. In this approximation the
conductivity is described by the first term of equation (27).

Let us consider a binary ordered alloy with BCC lattice. In this case, the number
of sublattices is two (v; = v = 1). In the nearest-neighbour approximation the matrix
elements of the effective-medium Green function G(E) in k-representation have the form

GU(E) = (E —o0)/ Dy G (E) = R (k)/ Dy

- - (39)
CY(Ey =h(W)/De  GHE)=(E—0o1)/ Dy
where
Dy = (E—o0E—on) = hP0R* K AP0 = AP (k) = AR)
h(k) =3 hlhe?
el
and p is the radius vector of a nearest neighbour in the alloy.
Let us use the semi-elliptical band model for the unperturbed density of states
2/rw)(w? — B2 L uw
0 &1 > wa

where w, is the half-width of the pure metal A energy band. Passing in (39) from £-
representation to the site one according to formula (12) and substituting integration over
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Zye

Figure 4. The contour C for integration in formula (42).

energy for summation over £ with the use of (40), we obtain for the diagonal matrix elements
of G{E) in equation (25) for the coherent potential:

- y) TE—o\ 2
1, £ o 2 _(E— E - 1/2
Goo = o7 [E a2 1(EHO_]) [w} — (E — o)(E ~ o)]

1)
G2 = (E — 01)/(E — 0)]Gl.

Taking intc consideration that according to (39) G};j = C_;f(k), it is possible to obtain the
relation
[=2]

[va(G — GTve(G — G = f dep(&)L(E, E) (42)

where

@) =1 3 NI vl ()EE — A(K))
o k

L(§, E) = (GP(E) - GBI + (G (E) - G BNIGE(E) — GPH(E)L.
In crystals of cubic symmetry one may represent @(£) in the form [17]

@l /3m)(w} — £5)*? €] < wa
0 5] > wa

where v, is the maximum electron velocity in the energy band.

Taking into account (43), the integration in (42) is performed in the segment [—1, 1]
(assuming wa = 1), In order to caiculate the integral (42), analytical continuation of the
integrand into the complex plane is carried out. The points § = —1, 1 are branch points of
the integrand @(&)L(&, E). In the segment [—1, 1] this function is real. At the other points
of the real axis it is imaginary. Therefore,

p&) = [ (43)

1
[_] PE}L(§, E}dE =Re %@(E)L(%ﬁ E)d§.

The contour C is shown in figure 4.
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The poles of the integrand are located at the points

7y = (A Ag)'? = —gy =2z 24 = —z]
Al=E—~og Ay = F — 0.

Performing the integration in (42) and substituting the result into (27), we shall obtain in
the single-site approximation for alloy conductivity

4yt
Ve = 3H9:I1(E)|£=,u (44)
where
1
I(E) = e{[A1Ax(1 — A Ap))' 2

A A PImA A
x [IALA (1 = (A)A2)* — Re(A;A2) +1Im(A; A2)] + (A1 A)* Re(A, ADT)

Al =E -0 Ay =E — 0oy,

Let us consider the expression (44) for the case of weak scattering when §/ws < 1. In
this case the solution of equation (25) for the coherent potential with the use of {41) may
be presented as

/2
fE—{v) — 318
o1 = {v) — 4nd +28%(x + In(y - %n)[b‘ —{(v) — 308 —i (——"———E ey ;,75)

X [1=(E = (v) + 3n8)(E — (v} — %05)1”2]

142
= (E— (v} +3nd
02 = (v) + 578 + 28°(x — M)y + 3m) {E ~{v)+ 38 —i (E — (v — gnﬁ)

% [1=(E — (v) + 3n8)(E — (v} — %?75)]”2]

{v) = xvp + yvg = y8 va =0, (43)

Analysis of expressions (41) and (45) shows that LRO leads to the formation of a true
gap in the energy spectrum of the alloy with width n]§| and with its centre at the point
(v) = yé.

When the Fermi level of the alloy is outside of the gap %]3 | & | — ()] £ 1, it follows
from (44) and (43) that

- 2e%RvE[1 — (u — (W)
T 3nQeBtxy — i)

(46)

Thus the dependence of the residual specific resistance p = 1/64, on the LRO parameter n
obeys Smirnov’s law [11]

p~ {xy—tnh.
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When the Fermi level is near the gap 3n18] < |u — {v)] ~ 3|8, the dependence of gy
on the composition and degree of LRO is rather complicated. So, for alloys of stoichiometric
composition (x = y = 0.5)

BeZhvl[1 — 18%(1 — p?)]*2
e T T 3 0051 + 1)

In the first case the resistance decreases with ordering, whereas in the second case the
behaviour of g, {(47) is quite the opposite: the resistance increases with ordering.

When {p—(v)| < %1’:‘[51 and the Fermi level p is in the gap, it is possible to show that the
alloy conductivity (44) is proportional to the small parameter | Im(A| A2)/ Re(A1Az)| g=p =
lo) /(u—o)+0y /(it—o;)], and according to (45) it goes to zero together with the imaginary
parts ;" and g, of the coherent potentials of the sublattices.

Therefore, during ordering, when the Fermi level gets into the gap being formed, the
alloy becomes similar to a dielectric in its electrical properties. This is, in fact, quantitative
confirmation of the existence of a metal-insulator transition predicted by Smirnov [11].

The main features of the behaviour of the alloy conductivity o, at LRO remain valid
in the general case when the ratio of the impurity scattering potential to the width of the
band 8/w, is arbitrary, though oy, now depends on y, §/w, and 1 in a complicated way.

In figures 3 and 6 the results of numerical calculation of the electronic density of states
(31) for alioys with various values of the LRO parameter 5 and correlation parameter for
the first coordination sphere & at y = 0.5 and 6/ws = —0.5 are presented. Figure 5
shows the density of states of the disordered alloy at various values of )% (a) &}? = 0,
{b) ef* = —0.05 and (c) g}* = —0.08. Figure 6 shows the density of states for ordered
alloy: (a) n = 0.4, ¢} = —0.1 and (b) n = 0.98, g}’ = 0. Broken curves depict the
density of states calculated in CPA and corresponding to the first term in (31). Full curves
depict the density of states in the two-site approximation. As can be seen from figure 5,
the characteristic dip appears on the curve of the energy dependence of the density of states
for formation of SR, which is a precursor of the true gap arising on ordering (figure 6). In
figures 7, 8 and 9 the results of numerical calculation of alloy conductivity are presented.
The calculation has been performed according to formulae (44), (25) and (41) for the case
8fwp = —0.5, y = 0.5 and for three different values of electron concentration Z.

At z = 0.8 when the Fermi level u (28) is outside of the gap near the upper edge of
the band, the conductivity o, increases with the growth of the degree of LRO {figure 7).

At z = 0.5, when the Fermi level u is in the middle of the gap, the behaviour of
the conductivity is the opposite: on ordering it decreases by some orders of magnitude
(figure 8).

At z = 0.6 the Fermi level u for the disordered alloy is between the middle and the
right edge of the gap formed on ordering. The position of the Fermi level i depends on
n and for complete LRO it goes outside of the gap area. (In figure 9 the points C and B
carrespond to the positions of the centre and the edge of the gap.) The non-monotonic
change in the conductivity in the given case (figure 9) is explained by this circumstance.

It should be pointed out that the study of the conductivity behaviour for LRO in the CPa
was carried out for the first time in [12]. However, the case of the Fermi level being in the
gap was not considered in that work.

Let us consider the contribution of scattering by pairs of atoms (taking into account the
interatomic correlations) to the ordered alloy conductivity. For this purpose the dispersion
law h(k) in (39) is taken in the form comesponding to an exponential decrease of the hopping
integral A, with distance between the sites

hik) = S(k) — S(kn) S{k) = Wil + (kRp)*™! W <0, (48)

&7
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Figure 5. Electrontc density of states g(E) for
the binary disordered alloy with various values of
correlation parameter £{° (see text for details).
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Figure 6. Electronic density of states g(E) for the ordered alloy (see text for details).
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Figure 8. Dependence of alloy conductivity & on LRO parameter 0 {z = 0.5).

The parameters W and Ry are determined as in (33). The wavevector & changes in the range
of the first Brillouin zone of the ordered alloy (&, is the radius of the Brillouin sphere).
The appearance of the constant term S(k,,} in (48) is caused by the choice of the energy
origin in the centre of the pure metal band.

The results of numerical calculation of the alloy conductivity (27) are presented in
table 2. The alloy conductivity in the single-site approximation is denoted by o'V and o is
the conductivity obtained taking account of scattering by pairs of atoms. The calculation is
carried out for different values of the LRO parameter n and of the pair correlation parameter
for the first coordination sphere, g}2. The scattering parameter § = —0.5 and y = 0.5. The
results of the calculations for two values of the electron concentration, i.e. for z == 0.9 (the
Fermi level is outside of the gap near the upper edge of the band) and z = 0.5 (the Fermi
level is in the centre of the gap), are presented in table 2. As follows from the results
obtained, it is possible to neglect the contribution of scattering by pairs of atoms to the
conductivity of disordered (7 = 0, £} = 0) and almost completely ordered (7 = 1) aloys.
However, this contribution may be considerable for partially ordered alloys (n ~ 0.5).

5. Discussion

We have considered the corrections to the electronic density of states and the conductivity of
alloys arising from electron scattering by pairs of atoms and the statistical correlations caused
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Figure 9, Dependence of alloy residual specific resistance p on LR0 parameter 1 (z = 0.6).

Table 2. Contribution of pairs to the conductivity of ordered alloys.

n 0 0 0 0.4 0.98
et 0 -0.05 -0.08 -0.I 0
Z=09 ooV’ Qlm")y 0337 0337 0337 0389 163
g (108~ m—h 0340 0359 0377 0471 1.63
Z=05 oWt~ mrh 0543 0543 0543 0433 0347 x 072
o {106~ m~1) 0549 0474 0430 0254 0343 x (072

by SRO and LRO. These corrections can lead to an essential change in the electronic spectrum
and a corresponding change in behaviour of the conductivity owing to the formation of a
dip or gap in the density of states.

It has been shown that SRO in the first coordination sphere (o; < 0) can lead to an
increase or decrease in the conductivity depending on the electron concentration, i.e., in
fact, on the position of the Fermi level with respect to the dip formed in the electronic
density of states and caused by SRO. This dip increases with increase of SRO, showing a
tendency to form a gap in the density of states if LRO comes into being.

In the case of weak scattering (|5]/wy < 1) the appearance of LRO leads to the formation
of a true gap in the electronic density of states of width #|8] (in the alloy model considered).
Again the behaviour of the conductivity depends critically on the position of the Fermi level
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with respect to the gap in the spectrum (see (46) and (47)). In particular, the Smirnov law
[11] (decreasing resistivity during ordering) is obtained. When the Permi level falls within
a range of energy where the density of states is zero, the conductivity, of course, vanishes.

A more complicated situation arises when the electron scattering is not small. Then,
at 8/wp = —0.5 and y = 0.5, numerical calculation shows the existence of a non-zero
density of states in the range of energies corresponding to the Brillonin zone boundary of
the partially ordered alloy (see figure 6(a)). A true gap appears in the considered model
only at nearly complete order. The comesponding behaviour of conductivity is shown in
figures 7-9.

The nature of the electronic states as well as the range of applicability of the theory
developed may be established by means of a study of the behaviour of parameters 3 (32)
depending on alloy parameters. We consider the inequality y < % as the condition for the
given theory to be valid and as the condition for the electronic states to be extended (not
localized).

Let us first evaluate the parameter ¥ at n = 0. As shown in [8), the supposition of the
existence of a single pole ky = k) + ik} of the Green function G, in the upper half-plane
of complex values of k leads to the expression

eikﬂ"'m

50m= L

Im Goo (ko > ko). (49)

oF'm

It follows from (49} that the values of parameter ¥ (32) do not exceed the quantity

Z(am)z

meQ

y =xy = xy|(za — Ta)[(G?o0 — (G}l (50)

In accord with {(49) the terms of the sum in (50) decrease with increase of the distance
between the lattice sites as

Cxp(—Zkg!’m)ﬂkUrmiz kg > 0.

Taking into consideration that k; ~ Imo and the relation following from condition (24)
(see also [13])

[+ xyltg — tal}|Gool*] Imo = xy|tg — T4 Im Gy

one may arrive at the conclusion that on the edges of the energy band (where g(E) ~
Im Gy — 0) the value of the parameter ¢ (50) is essentially larger than in the middle of

the band.
For more precise evaluation of the parameter y, fet us transform (50) using the evident

identity
1 4.5
_ (1 _ d_") 4Go0 _ a2y, (51)

and also the relation

do (r3) dGg
dE 1+ (c2)(Goo)? dE 2
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obtained by differentiation of equation (24). Substituting (31) and (52) into (50) we obtain

y =1P/(1+ P)|
) 1 4G =
P =~ - — G 53
1+ (22)(Goo)? (1+<r3>(coo>2 ag T m)) R

The energy band edges correspond to the extremum points of the dispersion law h(k),
which may be represented in the vicinity of these points by a parabolic dependence for
cubic crystals

h(k) = w+ pk? w = constant p = constant.

Taking into account also the fact that, on the edge of the energy band (at E — Ep),
Imo — 0, equation (25) in the range of energy values near band edges may be solved
analytically. As a result, it is possible to show that the derivative of the imaginary part of
the Green function Ggg (and outside of the energy band, the derivative of the real part of
Goo) with respect to energy tends to infinity at E — E; as (E — E;)~'/2, Owing to this,
parameter ¥ (E) (53) on the edge of the energy band at £ — E; approaches its maximum
value, which is equal to 1. In the energy range where % &£ ¥(E) £ 1, the cluster expansion
of the scattering T-matrix converges badly. Thus the expressions for alloy conductivity
obtained in the given work cannot be applied in the case when the value of the Fermi level
w falls within the mentioned range. However, the magnitude of this energy interval AE is
insignificant with respect to the energy band width, and is determined for the energy band
model (33) by the expressions:

2 — (i)4 (&)2 at 15|/|W] <« 1
PETVAW) \R

|AE| | Ga)

L N A .
— = = — 1, 1.
G \w (Rg) =T yw Y =W <

For the alloy parameters that were used above, the value |AE|/|W| ~ 5 x 1074,

Numerical calculation of the parameter y(E) (32) shows that its values do not exceed
0.05 in the whole energy range, with the exception of the above-mentioned energy ranges
on the edges of the band.

The arising of the gap in the electronic spectrum during ordering leads to the formation
of new edges of the band where the parameter ¥ may not be small. The width of the
corresponding energy intervals AE(n) may be evaluated at small value of LRO parameter
n with the aid of (53). It has the form

27213
AEMm| _ (1—y) & 8
w | T \w "w
‘We should recall that in the model considered in section 4 the true gap at not very
great » arises only in the case of weak scattering. Thus the results of section 4 for small

n and small scattering are valied only outside of the interval AE(n) (54). In particular,
at n < 2+/2y(1 — y)|8)/W the half-width of the gap is I1l§| < AE{n) and we cannot

t/3
) WIW L Lp L L. (54)




Electrical conductivity of an ordered alloy 1729

say anything about the arising of a gap and the behaviour of the conductivity when p falls
within the region of the gap.

Experimental study of the influence of ordering on alloy conductivity has been performed
in a number of works [11]. Most of them deal with the cases when the behaviour of the
residual resistance obeys Smirnov’s law, i.e. resistance decreases with ordering of an alloy.

However, the behaviour of the residual resistance in some cases exhibits more
complicated character [18-20]. A non-monctonic dependence of the residual resistance on
the annealing temperature was revealed in CuAug alloys [18] near the point T, = 200°C,
which corresponds to the temperature of the order—disorder transition (figure 10). Taking
into account that the Fermi Ievel of this alloy is situated near a gap arising at ordering in the
s band, it is natural to agsume that such a behaviour of the alloy resistance is caused by a
change in the electronic spectrum. Numerical calculation for the model alloy corresponding
to this case is presented.in figure 9. A similar behaviour of the resistance has been revaled
in Co+72 at.% Fe alloy near T, =300°C [19] and in Fe+25.5 at.%. Al alloy [20]. From the
point of view considered it is interesting that the temperature dependence of the resistance of
Cr-Al alloys shows semiconductor properties at concentration ~ 23.5 at.% Al and metallic
ones at other concentrations of Al [21].

10
| e —— O-
o
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=
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Figure 10. Dependence of residual specific resistance of CuAu; alloy on annealing temperature.

- The experimental results presented cannot serve, of course, as authentic confirmation of
the effects theoretically studied in the given work. In particular, it is necessary to determine
experimentally SRO and LRO parameters as well as the conductivity of the alloy under
consideration. On the other hand, to compare the theory developed in this paper with the
experimental data, one will perhaps need to use the real electronic spectrum (in this work
‘model spectra of the types (33), (40) and (48) have been used) and to extend the theory to
the case of a two-band model. We hope to realize this in subsequent publications.
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